
TYPE Hypothesis and Theory

PUBLISHED 29 August 2023

DOI 10.3389/fclim.2023.1212649

OPEN ACCESS

EDITED BY

Gabriele Standardi,

Ca’ Foscari University of Venice, Italy

REVIEWED BY

Kelsea Best,

University of Maryland, College Park,

United States

Sonia Yeh,

Chalmers University of Technology, Sweden

*CORRESPONDENCE

Robert M. Beyer

rbeyer@iom.int

RECEIVED 26 April 2023

ACCEPTED 28 June 2023

PUBLISHED 29 August 2023

CITATION

Beyer RM, Schewe J and Abel GJ (2023)

Modeling climate migration: dead ends and

new avenues. Front. Clim. 5:1212649.

doi: 10.3389/fclim.2023.1212649

COPYRIGHT

© 2023 Beyer, Schewe and Abel. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Modeling climate migration: dead
ends and new avenues

Robert M. Beyer1*, Jacob Schewe2 and Guy J. Abel3,4

1Global Data Institute, International Organization for Migration, Berlin, Germany, 2Potsdam Institute for

Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany, 3Asian Demographic

Research Institute, Shanghai University, Shanghai, China, 4Wittgenstein Centre (IIASA, VID/OEAW, WU),

International Institute for Applied Systems Analysis, Laxenburg, Austria

Understanding and forecasting human mobility in response to climatic and

environmental changes has become a subject of substantial political, societal,

and academic interest. Quantitative models exploring the relationship between

climatic factors and migration patterns have been developed since the early

2000s; however, di�erent models have produced results that are not always

consistent with one another or robust enough to provide actionable insights into

future dynamics. Here we examine weaknesses of classical methods and identify

next-generation approaches with the potential to close existing knowledge

gaps. We propose six priorities for the future of climate mobility modeling:

(i) the use of non-linear machine-learning rather than linear methods, (ii)

the prioritization of explaining the observed data rather than testing statistical

significance of predictors, (iii) the consideration of relevant climate impacts

rather than temperature- and precipitation-based metrics, (iv) the examination

of heterogeneities, including across space and demographic groups rather than

aggregated measures, (v) the investigation of temporal migration dynamics rather

than essentially spatial patterns, (vi) the use of better calibration data, including

disaggregated and within-country flows. Improving both methods and data to

accommodate the high complexity and context-specificity of climate mobility will

be crucial for establishing the scientific consensus on historical trends and future

projections that has eluded the discipline thus far.

KEYWORDS

migration modeling, climate mobility, gravity models, machine-learning, data

disaggregation, migration forecasting, climate change

1. Introduction

Whilst the details of how climate change will affect worldwide mobility remain subject
to high uncertainties, there is consensus that sudden- and slow-onset climate hazards will
lead to significant spatial redistributions of populations in many parts of the world. The
socio-economic challenges associated with this process can benefit strongly from evidence-
based insight and foresight that can enable anticipatory action by decision makers and other
stakeholders. Quantitative models of climate mobility aim to fill this knowledge gap and
facilitate concrete action to avert and minimize the adverse effects of climate change impacts
on human mobility.

A first series of quantitative predictions of the potential magnitude of future climatic
and environmental migration published between 1995 and 2010 (Myers and Kent, 1995;
Myers, 2002; Christian Aid, 2007; Stern and Stern, 2007; Biermann and Boas, 2010)
was heavily challenged, citing lack of methodological transparency and scientific rigor
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(Gemenne, 2011; Jakobeit and Methmann, 2012). To improve the
quantitative evidence base on climate mobility, numerous models
aiming to establish statistical relationships between historical
migration flows and environmental—in addition to demographic,
economic, social, and other—variables have appeared in the
scholarly literature since the late 2000s. These models are
complementary to approaches that statistically analyze, and
extrapolate, migration flow time series data without linking them to
any exogenous drivers (Bijak, 2006). The compilation and curation
of global migration datasets (Özden et al., 2011; Abel, 2018; Abel
and Cohen, 2019, 2022) have played a critical role in the rapid
increase in the number of models. Models used to project future
migration dynamics in response to expected climatic changes are
still few but are increasing steadily, responding to a strong high-
level demand for forecasts.

Quantitative models of climate mobility are based on a range
of different methods, often depending on the spatial and temporal
scale of the exercise. Agent-based models (Thober et al., 2018) are
typically used at small scales where detailed data, e.g., household
surveys, exist to parameterize context-specific behavioral rules.
Other approaches, including econometric gravity models (Poot
et al., 2016), radiation models (Simini et al., 2012), and spatially
explicit models of net migration (Niva et al., 2021), seek to describe
spatial and temporal interactions and patterns of migration at
larger scales. In some instances, these are embedded into Integrated
Assessment Models (Benveniste et al., 2020), complex global
modeling frameworks simulating major global environmental,
economic, and social dynamics (Parson and Fisher-Vanden, 1997).
Although parts of our analysis and recommendations equally apply
to small-scale models, here, our main focus are models operating at
the multinational, intra- and interregional, or global level.

At these large spatial scales, econometric methods have been
the basis of the large majority of quantitative models of migration
in the context of climatic and environmental changes (Hoffmann
et al., 2021), and their use has increased sharply over time
(Ramos, 2016). These approaches typically assess whether some
climate-related variable in the areas of origin or destination
has a statistically significant effect on flows, based on historical
observations covering large sets of countries and migration
corridors. Econometric models have produced a wide range of
results that are not always consistent, or even comparable, with one
another. Literature reviews and quantitative meta-analyses have
highlighted the divergence of the effects of sudden- and slow-
onset environmental factors on internal and international human
mobility estimated by different econometric studies (Obokata et al.,
2014; Berlemann and Steinhardt, 2017; Hoffmann et al., 2020;
Kaczan and Orgill-Meyer, 2020). Whilst some general qualitative
statements are supported by a majority of studies—for example
that adverse environmental conditions tend to have stronger
effects on internal than international migration—, there is no
consensus on the quantitative strength of effects. In some cases,
model coefficients associated with environmental drivers differ by
orders of magnitude across studies (Wesselbaum and Aburn, 2019),
suggesting a small degree of robustness in the estimates. In other
cases, even the sign of the effect is unclear (Table 1). A recent
prominent example, the Groundswell model (Clement et al., 2021)
forecast increased climate mobility in African countries under

TABLE 1 Examples of contrary results from econometric models on

climate mobility.

Hypothesis Significant
e�ect

No significant
or significant
opposite e�ect

Higher temperatures
increase international
migration

Cai et al., 2016;
Wesselbaum and
Aburn, 2019

Beine and Parsons,
2015; Drabo and
Mbaye, 2015; Nawrotzki
and Bakhtsiyarava, 2017

Less rainfall increases
international migration

Beine and Parsons,
2015

Cai et al., 2016;
Wesselbaum and
Aburn, 2019

Disasters increase
international migration

Reuveny and Moore,
2009; Coniglio and
Pesce, 2015; Drabo and
Mbaye, 2015;
Wesselbaum and
Aburn, 2019

Naudé, 2010; Beine and
Parsons, 2015; Cattaneo
and Peri, 2016

Higher temperatures
increase internal
migration

Mueller et al., 2014 Beine and Parsons, 2015

Less rainfall increases
internal migration

Barrios et al., 2006;
Gray and Mueller,
2012

Mueller et al., 2014;
Beine and Parsons, 2015

Disasters increase
internal migration

Saldaña-Zorrilla and
Sandberg, 2009; Beine
and Parsons, 2015

Bohra-Mishra et al.,
2014; Ruyssen and
Rayp, 2014

increased global warming, while the follow-up Africa Climate
Mobility Model (Amakrane et al., 2023), based on a similar
methodology, forecast the opposite. In summary, at present, there
is no consensus on the effects of climate-related factors on internal
and international migration (Beine and Parsons, 2017; Berlemann
and Steinhardt, 2017; Niva et al., 2021).

Whilst the use of different migration data and different climatic
and non-climatic variables considered in models account for
some of the discrepancies (Beine and Parsons, 2017; Abel et al.,
2019; Helbling et al., 2023), several other fundamental issues are
present in the large majority of models introduced to date that
limit what such models can contribute to our understanding of
historical trends and our ability project future trajectories of climate
mobility both within borders, where most of it is likely to take
place (Pörtner et al., 2022), and across. Here we discuss ways to
overcome these issues and highlight recent innovative approaches
with the potential to replace classical methods and introduce a new
generation of climate mobility models.

When assessing migration models, it is important to bear in
mind that the definition of migration in modeling exercises is
context-specific. Models examining international migration rely
on migration data collected by national statistical offices that can
cover a range of definitions developed to meet policy demands
of individual countries. These typically count migrants as those
who have changed their usual country of residence; however,
the definition of when a person is taking up a new residence
varies. In countries where persons are defined as migrants after
registering in their new country will have comparatively more
migrants enumerated than if it were to wait for individuals to
reside in the country for 12 months, as recommended by the
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United Nations. Models describing annual net migration at the
grid cell level account for any type of movement in and out of a
location between successive years, while models considering acute
displacement may focus on persons that do, or do not, return
home within a certain time period. Considering these differences is
important when interpreting results. Climate mobility in particular
faces an additional challenge of attributability. It is typically very
difficult to quantify the extent to which climate has impacted an
individual person’s decision or need to migrate (Obokata et al.,
2014; Boas et al., 2019). Large-scale models can circumvent this
problem by conducting simulations with and without accounting
for climate change, which allows them to formally define the
number of migrants attributed to climate change as the difference
between the climate-change and the counterfactual simulations.
Recent examples of this approach include the works of Benveniste
et al. (2020, 2022) and Clement et al. (2021).

2. Moving beyond linear models

The large majority of econometric models describes
logarithmized migration flows as a linear function of demographic,
economic, social, political, environmental, and other factors
(Hoffmann et al., 2020; Moore andWesselbaum, 2022). Qualitative
studies have demonstrated, however, that migration decisions
and outcomes are the result of complex interactions of these
factors, operating across multiple scales (Black et al., 2011).
Linear approximations of these highly non-linear relationships
inevitably fail to capture important, often even very basic, patterns
in migration dynamics. For example, migration rates from poor
countries tend to increase with increasing per-capita income (as
people gain the economic ability to migrate) before they decrease
as income moves beyond a certain threshold (as people lose
the economic incentive to migrate), a pattern described as the
“migration hump” (Clemens, 2014; Dao et al., 2018). Assuming
a linear response of mobility to income cannot accommodate
this pattern.

The relationship between migration and agricultural yields
provides a climate-related example of the limitations of linear
approaches. In agriculture-dependent countries, climate-induced
yield losses may decrease migration in low-income contexts,
increase it in medium/high-income contexts, and have no
measurable effect in countries that are weakly dependent on
agriculture or in which farmers can readily shift to alternative
economic sectors. Some econometric models have attempted to
account for this context-specificity by introducing categorical
variables that encode whether countries are agriculture-dependent
and/or have high income levels (Cai et al., 2016; Cattaneo and
Peri, 2016; Beine and Parsons, 2017); however, given that both
agricultural dependency and income are continuous variables,
these approaches are, by design, limited in how complete a picture
they can provide.

Some econometric analyses have introduced quadratic terms
to account for non-linear effects of selected variables on migration
flows (Bohra-Mishra et al., 2014; Cattaneo and Peri, 2016; Gray and
Wise, 2016); however, the assumed shape of the function may still
be too constraining. Generalized additive models—which describe
the predictand in terms of the sum of functions of one or two

predictor variables, where each function can in principle take an
arbitrary shape—would alleviate this issue to some extent, whilst
retaining model interpretability in terms the ability to visualize the
one- or two-dimensional summands of the regression function;
however, the fact that standard implementations are limited to
capturing at most pairwise interactions of predictor variables may
once again be too simplistic.

More complex non-linear machine-learning approaches, such
as random forests and neural networks, represent promising
solutions to the above-described issues of econometric models.
In principle, these approaches can describe arbitrarily complex
interactions between the various demographic, economic, social,
political, and environmental drivers and thus accommodate the
high context-specificity of how migration responds to these
variables. Care needs to be taken to avoid issues like overfitting;
however, standard software packages nowadays allow users to
solve these challenges in computationally efficient ways. Valuable
examples of advanced machine-learning methods in modeling
complex dynamics in the context of climate mobility include
the works of Best et al. (2021, 2022), Niva et al. (2021), and
Schutte et al. (2021). Given their high-dimensional and non-
linear nature, regression functions estimated from methods like
random forests and neural networks cannot be readily visualized
or verbally summarized analogous to statements like “a 1◦ increase
in temperature increases migration by x%”, which have enjoyed
popularity in linear econometric analyses (Barrios et al., 2006;
Bohra-Mishra et al., 2014; Coniglio and Pesce, 2015; Cai et al.,
2016; Cattaneo and Peri, 2016; Beine and Parsons, 2017; Peri
and Sasahara, 2019; Wesselbaum and Aburn, 2019). Loosing this
intuitive, though, likely too simplistic, interpretability of linear
models may be unavoidable for accommodating the complexity
of migration dynamics. Partial dependences of migration flows
on single predictor variables or pairwise interactions can still be
plotted for high-dimensional non-linear models, providing useful
information about the average effect of specific drivers. In addition,
feature importance ranking provides insights into the relative
weights of individual drivers in influencing migration.

Whilst non-linear regression methods like random forests or
artificial neural networks can be very effective in quantitatively
modeling climate mobility, they may not always be the best
tool for advancing conceptual understanding of economic, social,
and other processes that affect migration, due to the at-times
‘black box’ nature of these methods. Alongside advancing purely
statistical models of climate mobility, it remains important to
develop mechanistic models that translate causal theories of
migration into mathematical language. Systematic assessments of
models representing alternative theories would make an important
contribution toward establishing a comprehensive conceptual
framework of the mechanisms of climate mobility that holds
across large scales, which continues to be an open problem (De
Sherbinin et al., 2022). Solving it will require ways to represent
the multicausal and non-linear relationships inherent to climate
mobility without sacrificing mathematical tractability. Beyond
their value for advancing conceptual understanding, mechanistic
models can have the advantage of being able to generate robust
predictions even with relatively little training data, given that the
qualitative shape of the regression function is predefined (Baker
et al., 2018). In contrast, non-parametric statistical models like the
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aforementioned random forests and neural networks, which make
no prior assumptions about the relationships between relevant
driver variables and the resulting mobility outcome but derive these
relationships entirely from the training data, require a large number
of observations.

Models that predict future migration based only on historical
migration patterns (i.e., without incorporating exogenous drivers)
have established excellent standards for quantifying uncertainties
in forecasts (Bijak, 2010; Azose and Raftery, 2015; Azose et al.,
2016; Welch and Raftery, 2022). In contrast, models focused on
how the interaction of different drivers results in a migration
outcome, including the ones discussed here, lag behind these
developments (Bijak, 2006). For example, the uncertainty intervals
in the projections of the Groundswell model (Clement et al., 2021)
are based only on the uncertainty in one input variable (out of
several) and do not account for the estimated confidence ranges
of model parameters and the model’s goodness of fit. Rigorous
and transparent quantification of uncertainties in climate mobility
models will be crucial if model results and forecasts are to inform
decision makers.

3. Moving beyond significance testing

Most econometric models of climate mobility to date have
focused on estimating whether the effect of certain climatic or
environmental variables on migration is statistically significant
or not. In a number of cases when a variable is estimated to
be statistically significant, models including and excluding the
variable barely differ in terms of their R2 values (the proportion
of the variation in the observed migration data that they explain)
(Beine and Parsons, 2015, 2017; Coniglio and Pesce, 2015; Drabo
and Mbaye, 2015; Cai et al., 2016). This shows that establishing
statistical significance does not equate to improving the ability
to quantitatively explain migration patterns. Indeed, in a number
of studies that provide R2 measures, models explained only a
small proportion of the migration data (Drabo and Mbaye, 2015;
Beine and Parsons, 2017; Cattaneo and Bosetti, 2017; Wesselbaum
and Aburn, 2019; Benveniste et al., 2020, 2022; Adger et al.,
2021). Focusing on the question of statistical significance of
predictor variables in terms of p-values (ignoring their broader
issues (Wasserstein and Lazar, 2016)) limits progress not only
with regard to understanding historical migration patterns, but
also, importantly, in the context of forecasting future migration
dynamics, for which high model R2 values are essential.

At the same time, it is easy to obtain misleadingly high
R2 values by overfitting. Time-invariant origin-destination fixed
effects, used in a number of econometric models of bilateral
migration (Coniglio and Pesce, 2015; Cai et al., 2016; Wesselbaum
and Aburn, 2019; Beyer et al., 2022) suffice to explain R2 > 90%
of the variation in the observed flow data without explaining any
causal mechanisms (Beyer et al., 2022). Overfitting can be avoided
by incorporating model selection methods, e.g., based on Akaike or
Bayesian information criteria (Dziak et al., 2020). These can be used
to determine whether the inclusion of a given predictor variable
provides a strong enough improvement of the model in relation
to the cost of the additional degree(s) of parameter freedom, and
thus to rank the quality of alternative models based on different

sets of predictors. Thus far, information criteria-based model
selection has received little attention in migration modeling but
will likely become important for identifying relevant predictors and
building robust models that can extrapolate migration dynamics
into the future.

4. Moving beyond temperature and
precipitation

Over three quarters of empirical studies on climate mobility
consider the effect of somemeasure of temperature or precipitation
on migration (Hoffmann et al., 2021). This is surprising given
that temperature and precipitation are very rarely direct drivers
of migration, in that people are unlikely to move just because it
rains marginally more or less or because it is marginally warmer
or colder (unless physiologically critical thresholds are crossed (Im
et al., 2017; Xu et al., 2020). Instead, temperature and precipitation
averages, variations, and anomalies typically act upon mobility
via changes in flood risk, water stress, salinization and other
land degradation, agricultural productivity, and other impacts that
can compromise human wellbeing and socio-economic welfare
depending on local vulnerability and resilience.

In most econometric models of climate mobility, temperature
or precipitation enter the regression equation linearly or at most
quadratically. This tacitly assumes that the relationship between
the climatic variables and the more directly relevant environmental
impacts (floods, yield losses, etc.) combined with the relationship
between these impacts and the eventual migration outcome can
be reasonably approximated by a linear or quadratic function.
The complex non-linear equations describing flood occurrences,
water stress, crop yields, and other impacts as a function of
climatic conditions in state-of-the-art simulation models in these
disciplines (Schewe et al., 2019; Lange et al., 2020) demonstrate
how problematic even only the first part of this assumption is. For
example, the effect of temperature and precipitation on agricultural
yields is strongly contingent upon crop, location, technology, and
management (Jägermeyr and Frieler, 2018). Higher temperatures
may decrease yields of some crops in warm countries but have the
opposite effect in cold countries. Rainfall deficits decrease yields
but so does excess rainfall. Models assuming a linear response
of migration to temperature or precipitation disregard these and
many other important mechanisms, leading to conflated results.

The strong focus on temperature and precipitation as
predictors of climate mobility in existing models is not an
unavoidable necessity. Global observational datasets of floods
(Tellman et al., 2021), droughts (Vicente-Serrano et al., 2022),
storms (Geiger et al., 2018), wildfires (Artés et al., 2019), and crop
yields (Kim et al., 2021; FAOSTAT, 2022) have become available at
high quality. In addition, model-based historical reconstructions of
these and other variables are available frommodel intercomparison
initiatives such as ISIMIP (Warszawski et al., 2014). These provide
comprehensive spatio-temporal coverage and allow users to assess
the effects of climate change, simulated by the models, in isolation.
The above data can be readily incorporated into migration models
to avoid oversimplifying (oftentimes well-understood) complex
relationships between climatic conditions on the one hand and
relevant environmental hazards on the other hand.
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Future projections of these sudden- and slow-onset impacts
under different emission pathways have also become available
(Frieler et al., 2017; Lange et al., 2020) and can be readily
incorporated into models projecting future climate mobility, while
accounting for uncertainties through the use of multi-model
ensemble data. For example, Clement et al. (2021) used future
crop yield, water stress, and sea level rise projections to forecast
climate-induced internal migration.

5. Moving beyond aggregated analyses

Climate mobility is characterized by a number of
heterogeneities that are often not accounted for in existing
models but are likely too important to ignore. Recent progress in
four exemplary areas in which disaggregation has enabled deeper
analyses illustrates the potential of this strategy for modeling.

5.1. Space

Climate-related impacts relevant for humanmobility are highly
heterogeneous across space, even within countries (Pörtner et al.,
2022). Sea level rise and river floods directly affect only coastal
and riverine populations, respectively, while extreme temperatures,
water stress, and agricultural productivity can increase in some
areas of a country and decrease in others. Likewise, socio-economic
conditions often differ considerably within countries, even between
different rural areas and between different urban centers. Many
high-quality gridded socio-economic (De Sherbinin et al., 2015;
Leyk et al., 2019; Smits and Permanyer, 2019) and environmental
(see previous section) global datasets have appeared in recent years,
enabling migration models to account for spatial heterogeneities in
ways that nationally aggregated data cannot. Such models are not
limited to explaining past migration dynamics, thanks to gridded
projections of relevant variables, available for different future socio-
economic (Hurtt et al., 2011; Jones and O’Neill, 2016; Murakami
et al., 2021; Wang and Sun, 2022) and climatic scenarios (Frieler
et al., 2017; Lange et al., 2020) that can be incorporated into models
forecasting future migration.

Gridded maps of population densities over time, combined
with birth and death rates, allow for the estimation of local net
migration rates in grid cells (De Sherbinin et al., 2015). Linking
these to local socio-economic and environmental conditions can
reveal important relationships between the latter and observed
mobility patterns. Given that each spatial grid cell corresponds to
one data point per point in time, gridded approaches feature a
large quantity of data available for model calibration, allowing for
the study of effects that may be too subtle for spatially aggregated
country-level approaches. Recent years have seen several very
promising examples of spatially explicit models of climate mobility,
revealing complex sub-national patterns between mobility drivers
and outcomes (Neumann et al., 2015; Clement et al., 2021; Niva
et al., 2021; Burzyński et al., 2022; Amakrane et al., 2023).

5.2. Income

Across countries, income levels strongly influence the ability
and incentive to migrate. The same is true within countries, yet
most country-level models do not account for this due to lack of
empirical migrant data disaggregated by economic background.
Until such data become available, indirect methods of accounting
for national income heterogeneities will likely play an important
role. Using historical and projected future income heterogeneities
measured in terms of the Gini coefficient, Benveniste et al. (2022)
considered bilateral migration flows disaggregated by income
quintiles at origin and destination countries. This allowed the
authors to model the trade-off between a higher destination-
origin income gradient incentivizing migration and a lower
income level at the origin hampering migration due to resource
constraints. The approach can generate complex model behavior,
e.g., when socio-economic or environmental changes simultaneous
increase migration for some income groups in the origin and
decrease it for others, a mechanism that aggregated models cannot
simulate.

5.3. Age

Migration rate is typically a multimodal function of age,
peaking at the pre-labor force stage (children of young
migrating parents), early labor force stage (young adults
migrating for education and employment), and post-labor
force stage (retirement migration) (Rogers and Castro, 1981;
Plane, 1993), while also being strongly context-specific. With age
structures differing substantially between countries, accounting
for age could improve models of climate mobility substantially.
Whilst migration flow estimates do not yet exist for different
age groups, national migrant stock data through time are
available by age (United Nations, 2020), which, combined with
birth and death data, would allow for statistically deriving a
first-order approximation of age-disaggregated flows. Fertig
and Schmidt (2005) provided a notable example of such
an approach.

5.4. Sex

Sex-based socio-economic differences imply that migration
responses to climatic hazards can differ considerably between
females and males. In many contexts, lower access of females
to financial and natural resources, education, health, and other
services leads to higher vulnerability to adverse environmental
changes (Chindarkar, 2012), while sex differences in legal,
social, and security aspects relevant for migration often affect
the ability of females and males to move easily and safely
(Jolly et al., 2005). International migration flow estimates are
now available for females and males (Abel and Cohen, 2022),
and highlight important differences in flow rates across both
countries and time. Explicitly accounting for male and female
migrants in climate mobility models would help to accommodate
these heterogeneities.
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6. Moving beyond spatial patterns

Econometric models of migration are based on the assumption
that relationships between migration and relevant predictors
coincide at the spatial and the temporal scale (Beine and Parsons,
2015). For example, a strong positive relationship across countries
between national population size and national out-migration levels
would be used to infer that, for any given country, an increase
in population size over time will result in an increase in out-
migration; however, migration data available to date have not
allowed to confirm this latter temporal relationship (Beyer et al.,
2022). At present, it cannot be concluded with certainty whether
this apparent discrepancy between spatial and temporal patterns of
migration is an artifact linked to potential noise in the empirical
flow time series or whether indeed spatial and temporal patterns
follow different statistical rules. Summary statistics conventionally
used to validate econometric models have been shown to assess
merely whether models capture spatial patterns, without providing
insights into whether models correctly describe temporal migration
dynamics (Beyer et al., 2022). This is becausemigration flows across
countries vary over several orders of magnitude, whereas flows to or
from a given country over time typically do not. A model may thus
reproduce the order of magnitude of the observed flow well but fail
to correctly describe the changes in flow over time—a deficit that
cannot be inferred from standard R2 values of modeled vs. observed
logarithmized flows across all corridors (Beyer et al., 2022).
Explaining how migration flows change over time in response to
changes in driver variables represents a key prerequisite both for
explaining historical trends and for forecasting future trajectories.
Models therefore need to be evaluated based on metrics specifically
designed to isolate the temporal signal, enabling assessments of how
well corridor-specific modeled and observed flow time series agree.

7. Moving beyond current data

Global-scale estimates of international migration have only
recently approached a level of quality suitable for in-depth analyses
on migration in the context of climate and beyond, thanks
to curated stock data and improved flow estimation methods
(Abel and Cohen, 2019, 2022). Previous datasets, used for early
models of climate mobility, are subject to important issues. Those
datasets include the stock data compiled by Özden et al. (2011),
available only in 10-year intervals, which contain a number of
implausible data points (Abel, 2013) that have not been revised.
In migration models, these data have most often been used
to derive flows via stock differencing methods, which produce
estimates that are more weakly correlated to available migration
flow statistics than with other methods (Abel and Cohen, 2019).
More sophisticated methods are also subject to uncertainties.
Demographic accounting approaches rely on population, birth and
death data that are susceptible to inaccuracies that will impact
estimated flows. The Pseudo-Bayesian demographic accounting
approach of Azose and Raftery (2019) uses a weight within
its calculation based on comparisons to migration flows within
Europe, where international migration is relatively easy due to
freedom of movement regulations, and hence the resulting flow

estimates are pushed toward an upper end of a viable limit on the
volume of global migration flows.

A weak point in current available data is the lack of confidence
intervals around the estimated flows. Those would make it
possible to weigh individual observations during model calibration
according to their uncertainties, which are likely not uniform
across migration corridors and time. Whilst uncertainties in the
demographic estimation methods used to infer flow from stock
data (Abel and Cohen, 2019) could in principle be quantified
using methods such as those proposed by Little and Wu (1991)
and Lang (2004), the stock data themselves are published without
any uncertainty measures, which prevents a comprehensive
estimation of the uncertainties in the derived flow. Incorporating
independent flow datasets compiled by national, supranational,
and intergovernmental bodies (e.g., OECD, 2019; Eurostat, 2020)
for selected migration corridors may provide further insights into
uncertainties in available global datasets.

Most large-scale modeling studies on climatic effects on human
mobility have focused on international migration, even though
movement related to climatic and environmental changes thus far
has taken place mostly within countries (McLeman, 2013). Lack
or inaccessibility of internal flow data, especially with large spatial
coverage, has strongly contributed to this. Whilst in a number of
countries, such data have been gathered either directly by local
registration offices or through censuses and surveys, or would be
inferable from records collected by internal revenue, health, other
centralized administrative systems, suitably anonymized versions
are rarely available to researchers. The IMAGE project provides
internal migration data from a number of countries (Bell et al.,
2020) but has yet to be fully explored by the research community.
The IPUMS International data repository contains a number of
variables related to migration from census data from over 60
countries (Ruggles et al., 2003) that have begun to be utilized for
studying internal migration patterns in relation to climate events
(Thiede et al., 2016;Mueller et al., 2020; Abel et al., 2021). Improved
access to internal flow data would provide an extremely valuable
resource for future climate mobility modeling.

Digital data, including social media traffic and search engine
queries, are an emerging resource that has proven useful for
tracking mobility at a high spatial and temporal resolution both
within and across national borders (Tjaden, 2021). Whilst in some
contexts, these data can lack representativeness due to spatially
heterogeneous internet access and social media penetration (Sohst
et al., 2020), they can provide important information allowing
researchers to address questions for which traditional data may be
unsuitable, including fine-grained, and high-frequency, and real-
time movement patterns. Examples in which such digital data have
been used to study mobility include the works of Blumenstock
(2012), Lu et al. (2016), and Lai et al. (2019a), Lai et al. (2019b).

8. Conclusion

Global human mobility in response to climatic changes and
associated environmental hazards is as much a geopolitically
significant topic as an exceptionally complex challenge for
quantitative modeling and forecasting. Literature reviews and
meta-analyses have highlighted the diverging findings of existing
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approaches in the field, which are in part likely a result of
the high complexity and context-specificity of migration, which
classical methods are not always able to accommodate. Here, we
proposed six priorities for elevating models of climate mobility to
a level where scientific consensus on future shifts in the spatial
distributions of populations worldwide under different climatic
and socio-economic scenarios could be more likely achievable,
and where models can generate reliable and actionable outputs for
decision makers and other stakeholders. Our recommendations are

◦ The use of non-linear machine-learning techniques, rather
than linearmethods that have proven too simplistic for climate
mobility dynamics.

◦ The prioritization of explaining the observed data and
systematically selecting meaningful driver variables, rather
than testing statistical significance.

◦ The consideration of sudden- and slow-onset climate impacts
with immediate relevance for humans, such as floods and
crop failure, rather than more abstract temperature- and
precipitation-based variables.

◦ The examination of heterogeneities through approaches that
are spatially explicit and account for socio-economic
factors, including age, sex, and income, rather than
aggregated measures.

◦ The investigation of temporal migration dynamics by means
of appropriate new summary statistics beyond standardmodel
evaluation metrics that mostly assess spatial patterns.

◦ The use of better calibration data, including disaggregated and
within-country flows, that are more suitable for identifying
subtle and complex dynamics.

Effective adaptation measures in regions where climate change
is likely to have adverse impacts on human mobility are dependent
on reliable analytics and scenario-based forecasting. Several
contributions in recent years have provided valuable examples of a
new generation of models based onmethods and data that are fit for
the purpose of yielding operationalizable results. Building on these
approaches while continually refining modeling methodologies as
well as data collection and curation efforts at small and large scales
will be vital toward improving the evidence base on the effects of a
changing climate on global human mobility.

Climate impact research has greatly benefited from
standardized simulation protocols (O’Neill et al., 2016) and
scenarios of future greenhouse gas concentration (RCP) (Van
Vuuren et al., 2011) and socio-economic conditions (SSPs) (Riahi
et al., 2017) that have been developed collaboratively by the
research community. These have enabled consistent comparisons
of the results generated by alternative models, allowing for a
rigorous separation of robust signals and inter-model uncertainty.
While future projections of climate mobility are already largely
embedded in the RCP-SSP framework (but would benefit from
additional quantified scenarios, e.g., of border policy), the questions
addressed by different models thus far have been too different to
allow for meaningful comparative assessments, for example, of
how climate change is going to alter the spatial distribution of
populations worldwide through migration in the coming years

and decades under different RCP-SSP scenarios. Developing
standardized simulation protocols for climate mobility modeling
would be a major step toward identifying knowledge bottlenecks
and building much-needed scientific consensus.
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